Disease Models, Animal

Publication Title: 
Human Molecular Genetics

Autophagy is a highly regulated intracellular process involved in the turnover of most cellular constituents and in the maintenance of cellular homeostasis. It is well-established that the basal autophagic activity of living cells decreases with age, thus contributing to the accumulation of damaged macromolecules during aging. Conversely, the activity of this catabolic pathway is required for lifespan extension in animal models such as Caenorhabditis elegans and Drosophila melanogaster.

Author(s): 
MariÒo, Guillermo
Ugalde, Alejandro P.
Salvador-Montoliu, Natalia
Varela, Ignacio
QuirÛs, Pedro M.
CadiÒanos, Juan
van der Pluijm, Ingrid
Freije, JosÈ M. P.
LÛpez-OtÌn, Carlos
Publication Title: 
Human Molecular Genetics

Spinal muscular atrophy (SMA) is the most common genetic cause of infant mortality. SMA is caused by loss of functional survival motor neuron 1 (SMN1), resulting in death of spinal motor neurons. Current therapeutic research focuses on modulating the expression of a partially functioning copy gene, SMN2, which is retained in SMA patients. However, a treatment strategy that improves the SMA phenotype by slowing or reversing the skeletal muscle atrophy may also be beneficial. Myostatin, a member of the TGF-beta super-family, is a potent negative regulator of skeletal muscle mass.

Author(s): 
Rose, Ferrill F.
Mattis, Virginia B.
Rindt, Hansjˆrg
Lorson, Christian L.
Publication Title: 
Experimental & Molecular Medicine

Neural progenitor cells (NPs) have shown several promising benefits for the treatment of neurological disorders. To evaluate the therapeutic potential of human neural progenitor cells (hNPs) in amyotrophic lateral sclerosis (ALS), we transplanted hNPs or growth factor (GF)-expressing hNPs into the central nervous system (CNS) of mutant Cu/Zn superoxide dismutase (SOD1(G93A)) transgenic mice.

Author(s): 
Park, Sungju
Kim, Hyoung-Tae
Yun, Seokkwan
Kim, Il-Sun
Lee, Jiyoon
Lee, Il-Shin
Park, Kook In
Publication Title: 
NestlÈ Nutrition Workshop Series. Paediatric Programme

The focus here is on research involving long-term calorie restriction (CR) to prevent or delay the incidence of the metabolic syndrome with age. The current societal environment is marked by overabundant accessibility of food coupled with a strong trend to reduced physical activity, both leading to the development of a constellation of disorders including central obesity, insulin resistance, dyslipidemia and hypertension (metabolic syndrome). Prolonged CR has been shown to extend median and maximal lifespan in a variety of lower species (yeast, worms, fish, rats, and mice).

Author(s): 
Ravussin, Eric
Redman, Leanne M.
Publication Title: 
Cellular and Molecular Neurobiology

The nicotinamide adenine dinucleotide (NAD)-activated protein deacetylase Sir2p/Sirt1 has been strongly implicated in the modulation of replicative lifespan and promotion of longevity. Part of Sirt1's capacity for lifespan extension in complex organisms may be attributed to its protective activity against neuronal degeneration. Manipulation of Sirt1's activity or levels by pharmacological and genetic means in several models of neurodegenerative diseases demonstrated its neuroprotective credentials.

Author(s): 
Tang, Bor Luen
Publication Title: 
Cancer Research

C57BL/6J mice carrying the Min allele of Adenomatous polyposis coli (Apc) develop numerous adenomas along the entire length of the intestine and consequently die at an early age. This short lifespan would prevent the accumulation of somatic genetic mutations or epigenetic alterations necessary for tumor progression. To overcome this limitation, we generated F(1) Apc(Min/+) hybrids by crossing C57BR/cdcJ and SWR/J females to C57BL/6J Apc(Min/+) males. These hybrids developed few intestinal tumors and often lived longer than 1 year.

Author(s): 
Halberg, Richard B.
Waggoner, Jesse
Rasmussen, Kristen
White, Alanna
Clipson, Linda
Prunuske, Amy J.
Bacher, Jeffery W.
Sullivan, Ruth
Washington, Mary Kay
Pitot, Henry C.
Petrini, John H. J.
Albertson, Donna G.
Dove, William F.
Publication Title: 
Nihon Rinsho. Japanese Journal of Clinical Medicine

Exciting recent findings are remarkable extension of lifespan of model animals in which single genes are mutated. Studies on model animals have provided valuable as well as limited and often misleading information in understanding human aging and anti-aging practice. It is important to realize that extension of lifespan and retardation of aging processes are two different things in principle, the latter being apparently more important for improving QOL in human. Discussed here are selected topics on the limitation of model animal studies and potential problems of popular anti-oxidants.

Author(s): 
Goto, Sataro
Publication Title: 
Rejuvenation Research

A botanical extract (Regrapex-R) prepared from whole grape (Vitis vinifera) and Polygonum cuspidatum, which contains polyphenols, including flavans, anthocyanins, emodin, and resveratrol, exhibited dose-dependent scavenging effects on reactive oxygen species (ROS). The extract inhibited increases of ROS and protein carbonyl in isolated rat liver mitochondria following exposure to 2,2'-azobis (2-amidino propane) dihydrocholoride (AAPH), a potent lipid oxidant generator.

Author(s): 
Long, Jiangang
Gao, Hongxiang
Sun, Lijuan
Liu, Jiankang
Zhao-Wilson, Xi
Publication Title: 
Current Opinion in Drug Discovery & Development

TOR (target of rapamycin) is a serine-threonine protein kinase that is conserved across a diverse range of species from fungi to mammals. The signaling pathway that is anchored by TOR is also conserved across species. In mammals, mTOR integrates growth factor, amino acid, nutrient and energy sensing signals, and thus plays a major role in cell growth and proliferation, protein synthesis and autophagy.

Author(s): 
Sudarsanam, Sucha
Johnson, Dale E.
Publication Title: 
Aging Cell

Aging and age-related diseases can be viewed as the result of the lifelong accumulation of stress insults. The identification of mutant strains and genes that are responsive to stress and can alter longevity profiles provides new therapeutic targets for age-related diseases. Here we reported that a Drosophila strain with reduced expression of ribose-5-phosphate isomerase (rpi), EP2456, exhibits increased resistance to oxidative stress and enhanced lifespan. In addition, the strain also displays higher levels of NADPH.

Author(s): 
Wang, Ching-Tzu
Chen, Yi-Chun
Wang, Yi-Yun
Huang, Ming-Hao
Yen, Tzu-Li
Li, Hsun
Liang, Cyong-Jhih
Sang, Tzu-Kang
Ciou, Shih-Ci
Yuh, Chiou-Hwa
Wang, Chao-Yung
Brummel, Theodore J.
Wang, Horng-Dar

Pages

Subscribe to RSS - Disease Models, Animal