DNA Breaks, Double-Stranded

Publication Title: 
Nature Communications

It is hypothesized that a common underlying mechanism links multiple neurodegenerative disorders. Here we show that transitional endoplasmic reticulum ATPase (TERA)/valosin-containing protein (VCP)/p97 directly binds to multiple polyglutamine disease proteins (huntingtin, ataxin-1, ataxin-7 and androgen receptor) via polyglutamine sequence. Although normal and mutant polyglutamine proteins interact with TERA/VCP/p97, only mutant proteins affect dynamism of TERA/VCP/p97.

Author(s): 
Fujita, Kyota
Nakamura, Yoko
Oka, Tsutomu
Ito, Hikaru
Tamura, Takuya
Tagawa, Kazuhiko
Sasabe, Toshikazu
Katsuta, Asuka
Motoki, Kazumi
Shiwaku, Hiroki
Sone, Masaki
Yoshida, Chisato
Katsuno, Masahisa
Eishi, Yoshinobu
Murata, Miho
Taylor, J. Paul
Wanker, Erich E.
Kono, Kazuteru
Tashiro, Satoshi
Sobue, Gen
La Spada, Albert R.
Okazawa, Hitoshi
Publication Title: 
Molecular and Cellular Biology

The DNA damage response (DDR) is critical for genome stability and the suppression of a wide variety of human malignancies, including neurodevelopmental disorders, immunodeficiency, and cancer. In addition, the efficacy of many chemotherapeutic strategies is dictated by the status of the DDR. Ubiquitin-specific protease 28 (USP28) was reported to govern the stability of multiple factors that are critical for diverse aspects of the DDR. Here, we examined the effects of USP28 depletion on the DDR in cells and in vivo.

Author(s): 
Knobel, Philip A.
Belotserkovskaya, Rimma
Galanty, Yaron
Schmidt, Christine K.
Jackson, Stephen P.
Stracker, Travis H.
Publication Title: 
Molecular Cancer Therapeutics

Artesunate, the active agent from Artemisia annua L. used in the traditional Chinese medicine, is being applied as a first-line drug for malaria treatment, and trials are ongoing that include this drug in cancer therapy. Despite increasing interest in its therapeutic application, the mode of cell killing provoked by artesunate in human cells is unknown. Here, we show that artesunate is a powerful inducer of oxidative DNA damage, giving rise to formamidopyrimidine DNA glycosylase-sensitive sites and the formation of 8-oxoguanine and 1,N6-ethenoadenine.

Author(s): 
Berdelle, Nicole
Nikolova, Teodora
Quiros, Steve
Efferth, Thomas
Kaina, Bernd
Publication Title: 
The Journal of Nutritional Biochemistry

This study examined renal and glycemic effects of chromium picolinate [Cr(pic)3] supplementation in the context of its purported potential for DNA damage. In preventional protocol, male obese diabetic db/db mice were fed diets either lacking or containing 5, 10 or 100 mg/kg chromium as Cr(pic)3 from 6 to 24 weeks of age; male lean nondiabetic db/m mice served as controls.

Author(s): 
Mozaffari, Mahmood S.
Baban, Babak
Abdelsayed, Rafik
Liu, Jun Yao
Wimborne, Hereward
Rodriguez, Nancy
Abebe, Worku
Publication Title: 
Journal of Microbiological Methods

This study aimed to determine the mechanism of action of a natural antibacterial clay mineral mixture, designated as CB, by investigating the induction of DNA double-strand breaks (DSBs) in Escherichia coli. To quantify DNA damage upon exposure to soluble antimicrobial compounds, we modified a bacterial neutral comet assay, which associates the general length of an electrophoresed chromosome, or comet, with the degree of DSB-associated DNA damage.

Author(s): 
Solanky, Dipesh
Haydel, Shelley E.
Publication Title: 
Molecular Cancer Therapeutics

Artesunate, the active agent from Artemisia annua L. used in the traditional Chinese medicine, is being applied as a first-line drug for malaria treatment, and trials are ongoing that include this drug in cancer therapy. Despite increasing interest in its therapeutic application, the mode of cell killing provoked by artesunate in human cells is unknown. Here, we show that artesunate is a powerful inducer of oxidative DNA damage, giving rise to formamidopyrimidine DNA glycosylase-sensitive sites and the formation of 8-oxoguanine and 1,N6-ethenoadenine.

Author(s): 
Berdelle, Nicole
Nikolova, Teodora
Quiros, Steve
Efferth, Thomas
Kaina, Bernd
Subscribe to RSS - DNA Breaks, Double-Stranded