Protein-Serine-Threonine Kinases

Publication Title: 
Current biology: CB

BACKGROUND: Telomerase is a ribonucleoprotein that copies a short RNA template into telomeric DNA, maintaining eukaryotic chromosome ends and preventing replicative senescence. Telomeres differentiate chromosome ends from DNA double-stranded breaks. Nevertheless, the DNA damage-responsive ATM kinases Tel1p and Mec1p are required for normal telomere maintenance in Saccharomyces cerevisiae. We tested whether the ATM kinases are required for telomerase enzyme activity or whether it is their action on the telomere that allows telomeric DNA synthesis.

Author(s): 
Chan, S. W.
Chang, J.
Prescott, J.
Blackburn, E. H.
Publication Title: 
Molecular Cell

Mammalian telomeres consist of tandem DNA repeats that bind protective protein factors collectively termed shelterins. Telomere disruption typically results in genome instability induced by telomere fusions. The mechanism of telomere fusion varies depending on the means of telomere disruption. Here, we investigate telomere fusions caused by overexpression of mutant telomerases that add mutated telomeric repeats, thereby compromising shelterin binding to telomeric termini.

Author(s): 
Stohr, Bradley A.
Xu, Lifeng
Blackburn, Elizabeth H.
Publication Title: 
Molecular Cell

Using a modified single telomere length analysis protocol (STELA) to clone and examine the sequence composition of individual human XpYp telomeres, we discovered a distinct class of extremely short telomeres in human cancer cells with active telomerase. We name them "t-stumps," to distinguish them from the well-regulated longer bulk telomeres. T-stumps contained arrangements of telomeric repeat variants and a minimal run of seven canonical telomeric TTAGGG repeats, but all could bind at least one TRF1 or TRF2 in vitro.

Author(s): 
Xu, Lifeng
Blackburn, Elizabeth H.
Publication Title: 
Proceedings of the National Academy of Sciences of the United States of America

Telomeres are specialized DNA/protein complexes that comprise the ends of eukaryotic chromosomes. The highly expressed Ku heterodimer, composed of 70 and 80 K(d) subunits (Ku70 and Ku80), is the high-affinity DNA binding component of the DNA-dependent protein kinase. Ku is critical for nonhomologous DNA double-stranded break repair and site-specific recombination of V(D)J gene segments. Ku also plays an important role in telomere maintenance in yeast.

Author(s): 
Hsu, H. L.
Gilley, D.
Blackburn, E. H.
Chen, D. J.
Publication Title: 
Molecular Cell

Telomeres protect chromosome ends from fusing to double-stranded breaks (DSBs). Using a quantitative real-time PCR assay, we show that nonhomologous end joining between a telomere and an inducible DSB was undetectable in wild-type cells, but occurred within a few hours of DSB induction in approximately 1/2000 genomes in telomerase-deficient cells and in >1/1000 genomes in telomerase-deficient cells also lacking the ATM homolog Tel1p. The fused telomeres contained very little telomeric DNA, suggesting that catastrophic telomere shortening preceded fusion.

Author(s): 
Chan, Simon W.-L.
Blackburn, Elizabeth H.
Publication Title: 
Epigenetics

Epigenetic proteins have recently emerged as novel anticancer targets. Among these, bromodomain and extra terminal domain (BET) proteins recognize lysine-acetylated histones, thereby regulating gene expression. Newly described small molecules that inhibit BET proteins BRD2, BRD3, and BRD4 reduce proliferation of NUT (nuclear protein in testis)-midline carcinoma, multiple myeloma, and leukemia cells in vitro and in vivo. These findings prompted us to determine whether BET proteins may be therapeutic targets in the most common primary adult brain tumor, glioblastoma (GBM).

Author(s): 
Pastori, Chiara
Daniel, Mark
Penas, Clara
Volmar, Claude-Henry
Johnstone, Andrea L.
Brothers, Shaun P.
Graham, Regina M.
Allen, Bryce
Sarkaria, Jann N.
Komotar, Ricardo J.
Wahlestedt, Claes
Ayad, Nagi G.
Publication Title: 
Molecular Cancer Therapeutics

Artesunate, the active agent from Artemisia annua L. used in the traditional Chinese medicine, is being applied as a first-line drug for malaria treatment, and trials are ongoing that include this drug in cancer therapy. Despite increasing interest in its therapeutic application, the mode of cell killing provoked by artesunate in human cells is unknown. Here, we show that artesunate is a powerful inducer of oxidative DNA damage, giving rise to formamidopyrimidine DNA glycosylase-sensitive sites and the formation of 8-oxoguanine and 1,N6-ethenoadenine.

Author(s): 
Berdelle, Nicole
Nikolova, Teodora
Quiros, Steve
Efferth, Thomas
Kaina, Bernd
Publication Title: 
American Journal of Physiology. Heart and Circulatory Physiology

In the present study, we examined whether NF-kappaB activation is required for cardiac hypertrophy in vivo. Cardiac hypertrophy in rats was induced by aortic banding for 1, 3, and 5 days and 1-6 wk, and age-matched sham-operated rats served as controls. In a separate group of rats, an IkappaB-alpha dominant negative mutant (IkappaB-alphaM), a superrepressor of NF-kappaB activation, or pyrrolidinedithiocarbamate (PDTC), an antioxidant that can inhibit NF-kappaB activation, was administered to aortic-banded rats for 3 wk.

Author(s): 
Li, Yuehua
Ha, Tuanzhu
Gao, Xiang
Kelley, Jim
Williams, David L.
Browder, I. William
Kao, Race L.
Li, Chuanfu
Publication Title: 
The Journal of Biological Chemistry

Cell culture work suggests that signaling to polymerize cortical filamentous actin (F-actin) represents a required pathway for the optimal redistribution of the insulin-responsive glucose transporter, GLUT4, to the plasma membrane. Recent in vitro study further suggests that the actin-regulatory neural Wiskott-Aldrich syndrome protein (N-WASP) mediates the effect of insulin on the actin filament network. Here we tested whether similar cytoskeletal mechanics are essential for insulin-regulated glucose transport in isolated rat epitrochlearis skeletal muscle.

Author(s): 
Brozinick, Joseph T.
Hawkins, Eric D.
Strawbridge, Andrew B.
Elmendorf, Jeffrey S.
Publication Title: 
Gene

The inducible IkappaB kinase (IKKi/IKKepsilon) is a recently described serine-threonine kinase that activates the transcription factors NFkappaB, interferon regulatory factor-3 (IRF3) and CCAAA/enhancer-binding protein (C/EBPdelta). Several inflammatory agents have been shown to induce the expression of the IKKi gene in macrophages and other cell types but the mechanism is unknown.

Author(s): 
Wang, Naizhen
Ahmed, Salahuddin
Haqqi, Tariq M.

Pages

Subscribe to RSS - Protein-Serine-Threonine Kinases